I am an assistant professor at the Department of Mathematics, the University of Wisconsin-Madison. My research area is the field of partial differential equations in the kinetic theory and fluid dynamics. Here is my CV (updated April/2017)photoNormal. Find our active PDE and Geometric Analysis seminar link. 

(new) I will give a lecture series for a summer school at USC. For more information link.

Contact: ckim (dot) pde (at) gmail (dot) com


  1. Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains, Commun. Math. Phys, 308, 641-701 (2011) link
  2. The Boltzmann Equation near a Rotational Local Maxwellian, (S. Yun), SIAM J. Math. Anal., 44, 2560-2598 (2012) link
  3. Boltzmann Equation with a Large Potential in a Periodic Box, Comm. PDE, 39, 1393-1423 (2014) link
  4. The viscous surface-internal wave problem: global well-posedness and decay (I.Tice, Y. Wang),  Arch. Rational Mech. Anal., 212, 1-92 (2014) link
  5. Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law (R.Esposito, Y. Guo, R.Marra), Commun. Math. Phys, 323, 177-239 (2013) link
  6. Regularity of the Boltzmann Equation in Convex Domains, (Y.Guo, D.Tonon, A.Trescases), Invent. Math, 207, 115–290 (2017) link
  7. BV-regularity of the Boltzmann equation in Non-convex Domains, (Y.Guo, D.Tonon, A.Trescases), Arch. Rational Mech. Anal., 220, 1045-1093 (2016) link
  8. Stationary solutions to the Boltzmann equation in the Hydrodynamic limit, (R.Esposito, Y. Guo, R.Marra), submitted, link
  9. The Boltzmann equation with specular boundary condition in convex domains, (D. Lee), accepted in Comm. Pure Appl. Math., link
  10. Dynamics and stability surface waves with Surfactants, (I.Tice), SIAM J. Math. Anal., 49(2), 1295–1332 (2017) link
  11. Decay of the Boltzmann equation with the specular boundary condition in non-convex cylindrical domains, (D. Lee), submitted, link